
Game Master’s Report
Projections on the Upcoming Civil War

OCT-NOV 2020

Readiness: The LARP

Game Master’s Report
Projections on the Upcoming Civil War

 Between the 16th and the 18th of October 2020, Readiness the LARP, a
chamber live action roleplaying game took stage in Athens, Greece. The
chamber was located in a secreted, highly migrated area of central Ath-
ens, near the Pakistani and the Chinese community. Readiness the Larp
was designed to narrate and foreplay the pending scenarios of an upcom-
ing American Civil War. It sparked the friction between a group roleplaying
“the Preppers” (this movement of doomsday enthusiasts who marshal for
the “end of the world as we know it”), an additional bunch of “Boogaloo
Bois” (Civil War accelerationists flexing tactical gear and Hawaian shirts),
and a group playing the “Golden Horde” (the allegedly criminal horde of
the unprepared citizens molded in preppers’ jargon and literature). The
game also featured a number of neutral figures inspired by popular digital
culture: The Oracle, Pudge, Sensei, the Operator and Jeso (a non binary
variation of the messiah). The game consisted of 3 acts meant to unravel
in 3 consequent days.

 Readiness is a serialized simulation of the unfolding political antago-
nism. It adapts real, often scary and cringey collective identities to a world
permeated by fantasy aesthetics and infantile hopepunk sentimentalism.

 The Preppers were played as herbalists by two participants, catering
their tented plantation of blood-producing crops. Their main task was to
protect the garden and the Egg (home of Jeso) against the attacks of the
Golden Horde, provide ingredients for the Oracle’s potions, and develop
a fungus that could exterminate the Horde. On the second day, a prepper
conspirated with the Boogaloo Bois to snatch his fellow prepper and carry
out sick experiments on him.

 The Golden Horde started in a dismal state. Batu, the legendary leader
of the Horde, woke up captured and imprisoned by Boogaloo Bois. The
ExCop (member of the Horde) was also chained and detained. The Loot-
er (Horde) struggled through a hidden tunnel to free the ExCop, while
the Activist (Horde) provided guidance from the “Art of War”. Their main
goal was to steal everything that was not nailed down (weapons, lockets,
chains, props etc.) and use it to conquer the Egg (home of Jeso). By the
3rd day of the Game, the Horde prevailed, bashing and humiliating the
filthy Preppers and Boogaloo Bois. They then published the “Declaration
of the Golden Horde”, and disseminated memes for the global empower-
ment of the Horde.

 The Boogaloo Bois were monitoring and torturing Batu, the captured
leader of the Horde. Their task was to capture most members of the
horde, cage them, and experiment with bootleg neuralink Brain Implants
(-1 Intelligence, +1 Perception) on the heads of their caged specimens.
The neuralink tryouts were ordered and commissioned by their boss,
whose tech company is about to launch a new project to develop neural
connections between electronic devices and the brain, aiming to monitor
brain activity. Meanwhile, those space boys enjoyed to mock their fellow
preppers for their obsolete attachment to the cultivation of the soil.

 The Oracle casted spells against the Horde, sanctified the Preppers’
weapons and fed the preppers with a magical potion (+2 Constitution),
using a sacred spoon. She sat on her throne, communicated with Jeso
through a sacred lore and delivered ritual litanies to protect the Egg. On
the 3rd day, she turned sick and spread a disease to all.

 Pudge raided the camp on the second day causing total mayhem. It cried
out a duress to the camera but it was ignominiously put down by the Sen-
sei.

 The Sensei supervised the game’s armory taking trades to provide play-
ers with weapons. A true warlady, Sensei taught defence techniques
(+2 to Unarmed Combat) to participants and flexed breakdance moves. A
system of barter economy governed the relations between clans and per-
sons. Anyone was allowed to barter.

 Jeso dwelled the Egg, the sacred capsule that the Horde sought to
conquer. Operating through its secluded space, Jeso sang anthems and
blessings but it was mostly preoccupied with narcissistic self-curation
and texting on social media and Youtube’s live chat. On the 3rd day, Jeso
blessed the Horde and sided with their victorious insurgency against prep-
pers and Boogaloo Bois.

 The Operator had installed a CCTV monitoring system and a series of
sensors distributed to the subjects. The system was simultaneously
broadcasting the experiment to a group of observers. Data was extensive-
ly collected from the head mounted cameras, neuralink waveforms, crowd
tracking system, player vectors and the postgame forensics scan. This
data will now be analysed and used as the primary Data Set fed into an
Artificial Neural Network trained to predict the outcome of the upcoming
Civil War.

Report Signed by : Prepper Herbalist & The Operator
November 2020

Readiness is a Chamber LARP for 8-16 Players and a Game Master that takes place inside the
“Encampment”, a fictional campsite constructed by the Preppers to protect themselves against an
upcoming apocalypse of mysterious origins. Readiness is informed by current global turmoil and
the attitudes of survival, alienation and vigilance built around it. It combines elements of gaming
culture, performance, lyric theater and post-media art.

The LARP will play out over 4 days, including an introduction and character building workshop and
3 Acts played in real time over 3 days. Players of Readiness will be assigned to one of 3 Clans
(Preppers, Horde, Boogaloos, Neutral) and given a Character Outline, who they can further design
and refine. The LARP will be broadcasted as a Live Stream and recorded for further editing.

The world of Readiness is a bleak apocalyptic dystopia where madness, misery and toxic per-
sonalities have won over reason. It takes place within the Encampment. We are unsure what lies
beyond. The Encampment consists of a series of Key Locations. These are The Egg, the Tunnels,
the Firepit, the Lab, the Throne, the Cage, the Armory and the Wall.

Readiness is not a combat based LARP. But when needed the following rules can be used:
First hit gets you wounded. Second gets you unconscious and bleeding. Third gets you dead. Light
armor gives you 1 point of resistance, heavy armor 2 points. Entire body is 1 armor zone, so wher-
ever you get hit your protection is weakened. You only get protection where you are covered by
armor. 2-handed weapons will ignore light armor. Shields are unusable after 10 strikes by a 2-hand-
ed weapon. Don’t hit the head, neck or groin areas. Getting hit, wounds and unconsciousness need
to be roleplayed. When you’re reduced to unconscious, you bleed for 15 minutes – if no one starts
healing you by then, your character dies and can no longer be played. Safety is the first rule – call a
hold if there’s any danger. LARP is a physical activity and you play at your own risk and responsibil-
ity. Roleplay good, play nice and have fun.

Bring a starting attire that matches your character. Additional accessories, props and weapons will
be provided. Wear sports shoes. Additional Costumes, Props and Weapons will be provided. Items
can be Traded or Looted during the game. Upgrades and Special items can be acquired at the Ar-
mory and the Lab. Players can also Craft custom items during the game.

Meta Techniques: The Game Master will be intervening minimally, to help guide the main plot using
a few meta techniques that will be explained during the intro.

Play to Lose - Play to Lift : A technique to create better drama by not trying to win, but letting your
character lose. It is used in a collaborative play style rather than a competitive play style. Play to
Lift means that the responsibility for your drama and your character also rests on all your co-play-
ers. You have to lift each other.

PLAYER GUIDE:

The Clans

Boogaloos
Far-right, pro-gun, anti-government, and extremist
militia group born out of 4chan memes. Inspired
by right wing accelerationist ideas.
Goal: Ignite a Civil War
Special: Meme Magick. Force Neutral Characters
to take a side for 5 minutes.

Preppers
Organized and obsessed with self-reliance,
stockpiling supplies, and survival knowledge.
Goal: Protect their Property.
Special: Survival Skills. Can Craft new objects and
Escape tough situations.

Horde
The mass of the unprepared and unorganized
turned animalistic in their agony for survival.
Goal: Loot.
Special: Strength of the Night. The Horde is 50%
Invisible during nighttime.

Neutral
Neutral Characters are in this either for personal
gain or for the greater good. It’s hard to say.

The Characters
Oracle (Neutral) - Psychic that has insights on the catastrophe. Skill: Psy Spells & Potions
Messiah (Neutral) - Elevated Spiritual Being. Skill: Release Civil Tension
Bard (Neutral) - A true artist of the community, respected by all Clans. Skill: Messenger
Operator (Prepper) - Controls the Security System at the Encampment. Skill: Assign Cam
Sensei (Prepper) - Martial Arts Expert. Skill: Teach Melee Combat
Bunker Bitch (Prepper) - Previously Privileged Alpha Female. Skill: Persuasion
Herbalist (Prepper) - Bonsai Hydroponics gardener. Skill: Heal / Revive
Boi 1 (Boogaloo) - Ideologically Confused Beta Haiwaian Tactical. Skill: Games
Boi 2 (Boogaloo) - Ideologically Confused Beta Haiwaian Tactical. Skill: Firearms
Batu (Horde) - Retired Warrior Leader of the Golden Horde. Skill: Art of War
ExCop (Horde) - Former SWAT cop with PTSD. Conspiracy Theorist. Skill: Combat
Activist (Horde) - Dancer Medic Protester. Skill: Heal / Revive
Looter (Horde) - Here to loot for fashion brands and resell on ebay. Skill: Traps/Lockpick

The Declaration
of the Golden Horde
(as it was trumpeted by the Horde itself at the ending part of the game)

Life in this society being, at best, an utter bore and no
aspect of society being at all relevant to the Golden
Horde, there remains to civic-minded, responsible, thrill-
seeking Horders only to overthrow the government,
eliminate the money system, institute complete
automation and destroy the Preppers. It is now
technically feasible to reproduce without the aid of
Preppers (or, for that matter, Horders) and to produce
only Horders. We must begin immediately to do so.
Retaining the Prepper has not even the dubious purpose
of reproduction. The Prepper is a biological accident:
the Y (Prepper) gene is an incomplete X (Horde) gene, that
is, it has an incomplete set of chromosomes. In other
words, the Prepper is an incomplete Horder, a walking
abortion, aborted at the gene stage. To be Prepper is
to be deficient, emotionally limited; Preparedness is a
deficiency disease and Preppers are emotional cripples.
The Prepper is completely egocentric, trapped inside
himself, incapable of empathizing or identifying with
others, or love, friendship, affection of tenderness.
He is a completely isolated unit, incapable of rapport
with anyone. His responses are entirely visceral,
not cerebral; his intelligence is a mere tool in the
services of his drives and needs; he is incapable of
mental passion, mental interaction; he canot relate to
anything other than his own physical sensations. He
is a half-dead, unresponsive lump, incapable of giving
or receiving pleasure or happiness; consequently, he is
at best an utter bore, an inoffensive blob, since only
those capable of absorption in others can be charming.
He is trapped in a twilight zone halfway between
humans and apes, and is far worse off than the apes
because, unlike the apes, he is capable of a large array
of negative feelings - hate, jealousy, contempt, disgust,
guilt, shame, doubt - and moreover, he is aware of
what he is and what he isnot.
The declaration was an unapologetic appropriation of a famous part of SCUM manifesto by Valerie Solanas.

18:23:25.697: CPU Name: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
18:23:25.697: CPU Speed: 2808MHz
18:23:25.697: Physical Cores: 4, Logical Cores: 8
18:23:25.697: Physical Memory: 16340MB Total, 10729MB Free
18:23:25.697: Windows Version: 10.0 Build 18362 (revision: 1082; 64-bit)
18:23:25.697: Running as administrator: false
18:23:25.697: Aero is Enabled (Aero is always on for windows 8 and above)
18:23:25.697: Windows 10 Gaming Features:
18:23:25.697: Game DVR: On
18:23:25.699: Sec. Software Status:
18:23:25.701: Windows Defender Antivirus: enabled (AV)
18:23:25.702: Windows Firewall: enabled (FW)
18:23:25.702: Current Date/Time: 2020-10-18, 18:23:25
18:23:25.702: Browser Hardware Acceleration: true
18:23:25.702: Portable mode: false
18:23:26.190: OBS 24.0.3 (64-bit, windows)
18:23:26.190: ---------------------------------
18:23:26.214: ---------------------------------
18:23:26.214: audio settings reset:
18:23:26.214: samples per sec: 44100
18:23:26.214: speakers: 2
18:23:26.215: ---------------------------------
18:23:26.215: Initializing D3D11...
18:23:26.215: Available Video Adapters:
18:23:26.217: Adapter 0: NVIDIA GeForce GTX 1060
18:23:26.217: Dedicated VRAM: 3132096512
18:23:26.217: Shared VRAM: 4272400384
18:23:26.217: output 0: pos={0, 0}, size={1920, 1080}, attached=true
18:23:26.220: Loading up D3D11 on adapter NVIDIA GeForce GTX 1060 (0)
18:23:26.274: D3D11 loaded successfully, feature level used: b000
18:23:26.274: D3D11 GPU priority setup failed (not admin?)
18:23:26.765: ---------------------------------
18:23:26.765: video settings reset:
18:23:26.765: base resolution: 1920x1080
18:23:26.765: output resolution: 1920x1080
18:23:26.765: downscale filter: Bicubic
18:23:26.765: fps: 30/1
18:23:26.765: format: NV12
18:23:26.765: YUV mode: 601/Partial
18:23:26.765: NV12 texture support enabled
18:23:26.767: Audio monitoring device:
18:23:26.767: name: Default
18:23:26.767: id: default
18:23:26.767: ---------------------------------
18:23:26.770: [CoreAudio encoder]: CoreAudio AAC encoder not installed on the system or
couldn’t be loaded
18:23:26.771: Failed to load ‘en-US’ text for module: ‘decklink-ouput-ui.dll’
18:23:26.807: [AMF] AMF Test failed due to one or more errors.
18:23:26.807: Failed to initialize module ‘enc-amf.dll’
18:23:26.827: [obs-browser]: Version 2.7.15
18:23:26.831: NVENC supported
18:23:26.897: Couldn’t find VLC installation, VLC video source disabled
18:23:26.904: No blackmagic support
18:23:26.911: ---------------------------------
18:23:26.911: Loaded Modules:
18:23:26.911: win-wasapi.dll
18:23:26.911: win-mf.dll
18:23:26.911: win-dshow.dll
18:23:26.911: win-decklink.dll
18:23:26.911: win-capture.dll
18:23:26.911: vlc-video.dll
18:23:26.911: text-freetype2.dll
18:23:26.911: rtmp-services.dll
18:23:26.911: obs-x264.dll
18:23:26.911: obs-vst.dll
18:23:26.911: obs-transitions.dll
18:23:26.911: obs-text.dll
18:23:26.911: obs-qsv11.dll
18:23:26.911: obs-outputs.dll
18:23:26.911: obs-filters.dll
18:23:26.911: obs-ffmpeg.dll
18:23:26.911: obs-browser.dll
18:23:26.911: image-source.dll
18:23:26.911: frontend-tools.dll
18:23:26.911: enc-amf.dll
18:23:26.911: droidcam-obs.dll
18:23:26.911: decklink-ouput-ui.dll
18:23:26.911: coreaudio-encoder.dll
18:23:26.911: ---------------------------------
18:23:26.911: ==== Startup complete ===
18:23:26.918: All scene data cleared
18:23:26.919: --
18:23:27.202: WASAPI: Device ‘Speakers (Realtek High Definition Audio)’ initialized
18:23:27.280: WASAPI: Device ‘Speakers (Realtek High Definition Audio)’ initialized
18:23:27.350: WASAPI: Device ‘Microphone (Realtek High Definition Audio)’ initialized
18:23:27.384: adding 46 milliseconds of audio buffering, total audio buffering is now 46 millisec-
onds (source: Mic/Aux)
18:23:27.384:
18:23:27.431: WASAPI: Device ‘Microphone (HD Pro Webcam C920)’ initialized
18:23:27.456: WASAPI: Device ‘Microphone (HD Webcam C310)’ initialized
18:23:27.467: WASAPI: Device ‘Microphone (Elgato Sound Capture)’ initialized
18:23:27.468: [Media Source ‘Pigs_Prezi’]: settings:
18:23:27.468: input: D:/Users/Raptor/Documents/Projects/Readiness/
TheLarp/Pigs_Prezi.mp4
18:23:27.468: input_format: (null)
18:23:27.468: speed: 100
18:23:27.468: is_looping: yes
18:23:27.468: is_hw_decoding: no
18:23:27.468: is_clear_on_media_end: yes
18:23:27.468: restart_on_activate: yes
18:23:27.468: close_when_inactive: no
18:23:27.567: [Media Source ‘CreditsClip’]: settings:
18:23:27.567: input: D:/Users/Raptor/Documents/Projects/Readiness/
TheLarp/EndCredits_FX.mp4
18:23:27.567: input_format: (null)
18:23:27.567: speed: 100
18:23:27.567: is_looping: yes

18:23:27.567: is_hw_decoding: no
18:23:27.567: is_clear_on_media_end: no
18:23:27.567: restart_on_activate: yes
18:23:27.567: close_when_inactive: no
18:23:27.568: [Media Source ‘IntroClip’]: settings:
18:23:27.568: input: D:/Users/Raptor/Documents/Projects/Readiness/
TheLarp/IntroScreen_FX.mp4
18:23:27.568: input_format: (null)
18:23:27.568: speed: 100
18:23:27.568: is_looping: yes
18:23:27.568: is_hw_decoding: no
18:23:27.568: is_clear_on_media_end: no
18:23:27.568: restart_on_activate: yes
18:23:27.568: close_when_inactive: no
18:23:28.110: [DroidCamOBS] create(source=00000256177B0AA0) v1.0
18:23:30.189: [DroidCamOBS] activated=1, deactivateWNS=0, is_showing=0, enable_audio=0
18:23:30.189: [DroidCamOBS] video_format=avc video_resolution=1280x720
18:23:30.189: [DroidCamOBS] device_info.id=dev_id_wifi device_info.ip=192.168.43.201
device_info.port=4747 device_info.type=1
18:23:30.190: [DroidCamOBS] video_thread start
18:23:30.190: [DroidCamOBS] video_decode_thread start
18:23:30.190: [DroidCamOBS] audio_thread start
18:23:30.192: Switched to scene ‘4xCAMS’
18:23:30.193: --
18:23:30.193: Loaded scenes:
18:23:30.193: - scene ‘Scene’:
18:23:30.193: - source: ‘Display Capture’ (monitor_capture)
18:23:30.193: - source: ‘Game Capture’ (game_capture)
18:23:30.193: - scene ‘Intro’:
18:23:30.193: - source: ‘IntroClip’ (ffmpeg_source)
18:23:30.193: - scene ‘4xCAMS’:
18:23:30.193: - source: ‘LaptopCam’ (dshow_input)
18:23:30.193: - source: ‘1_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘2_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘3_Logitec1080’ (dshow_input)
18:23:30.193: - source: ‘Space_Elgato Cam’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - filter: ‘Noise Suppression’ (noise_suppress_filter)
18:23:30.193: - source: ‘DroidCam OBS’ (droidcam_obs)
18:23:30.193: - source: ‘OV_4CAM’ (image_source)
18:23:30.193: - scene ‘3_1xCAMs’:
18:23:30.193: - source: ‘Space_Elgato Cam’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - filter: ‘Noise Suppression’ (noise_suppress_filter)
18:23:30.193: - source: ‘1_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘2_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘3_Logitec1080’ (dshow_input)
18:23:30.193: - source: ‘LaptopCam’ (dshow_input)
18:23:30.193: - source: ‘OV_3_1’ (image_source)
18:23:30.193: - scene ‘S_SpaceCam’:
18:23:30.193: - source: ‘LaptopCam’ (dshow_input)
18:23:30.193: - source: ‘1_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘2_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘3_Logitec1080’ (dshow_input)
18:23:30.193: - source: ‘Space_Elgato Cam’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - filter: ‘Noise Suppression’ (noise_suppress_filter)
18:23:30.193: - source: ‘OV_Solo_Misc’ (image_source)
18:23:30.193: - scene ‘S_Cam3’:
18:23:30.193: - source: ‘LaptopCam’ (dshow_input)
18:23:30.193: - source: ‘1_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘2_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘3_Logitec1080’ (dshow_input)
18:23:30.193: - source: ‘Space_Elgato Cam’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - filter: ‘Noise Suppression’ (noise_suppress_filter)
18:23:30.193: - source: ‘OV_Solo_Misc’ (image_source)
18:23:30.193: - scene ‘S_Cam1’:
18:23:30.193: - source: ‘LaptopCam’ (dshow_input)
18:23:30.193: - source: ‘1_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘2_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘3_Logitec1080’ (dshow_input)
18:23:30.193: - source: ‘Space_Elgato Cam’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - filter: ‘Noise Suppression’ (noise_suppress_filter)
18:23:30.193: - source: ‘OV_Solo_Misc’ (image_source)
18:23:30.193: - scene ‘S_Cam2’:
18:23:30.193: - source: ‘LaptopCam’ (dshow_input)
18:23:30.193: - source: ‘1_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘2_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘3_Logitec1080’ (dshow_input)
18:23:30.193: - source: ‘Space_Elgato Cam’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - filter: ‘Noise Suppression’ (noise_suppress_filter)
18:23:30.193: - source: ‘OV_Solo_Misc’ (image_source)
18:23:30.193: - scene ‘S_CamOp’:
18:23:30.193: - source: ‘LaptopCam’ (dshow_input)
18:23:30.193: - source: ‘1_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘2_Logitec720’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - source: ‘3_Logitec1080’ (dshow_input)
18:23:30.193: - source: ‘Space_Elgato Cam’ (dshow_input)
18:23:30.193: - filter: ‘Color Correction’ (color_filter)
18:23:30.193: - filter: ‘Noise Suppression’ (noise_suppress_filter)

OperatorLog.txt - Data Written on 18 Oct 2020

import glob
import numpy as np
import pandas
from scipy.optimize import minimize
from PIL import Image
from datetime import datetime
#import matplotlib.pyplot as plt
import os
import parselog
from scipy.signal import savgol_filter
from scipy.stats import trim_mean

def getImageList(globpattern):
 “””Return a dataframe containing a list of images and dates of when the photos were
taken.”””
 jpgfiles = glob.glob(globpattern)
 filenames = list(map(lambda f: os.path.split(f)[-1],jpgfiles))
 df = pandas.DataFrame({‘DateTimeOriginal’: np.datetime64(unit=’ms’), ‘Filename’: jpgfiles
},index=filenames)
 tagDateTimeOriginal = 36867 #DateTimeOriginal <- unfortunately only 1sec resolution!
 for idx,row in df.iterrows():
 with Image.open(row.Filename) as img:
 t=datetime.strptime(img._getexif()[tagDateTimeOriginal],’%Y:%m:%d %H:%M:%S’);
 df.set_value(idx,’DateTimeOriginal’,np.datetime64(t,unit=’ms’))
 #exif = { ExifTags.TAGS[k]: v for k, v in img._getexif().items() if k in ExifTags.TAGS }
 #jpgtimes[idx] = np.datetime64(parse(exif[“DateTimeOriginal”]))
 t = df.DateTimeOriginal.values.astype(‘datetime64[ms]’)
 t = (t-t[0]).astype(‘float’)
 df.insert(len(df.columns),’RelTimeMS’,t)
 df.sort_values([‘DateTimeOriginal’, ‘Filename’],inplace=True)
 df.index.name = ‘File’
 return df

def costfun2(jpgtimes,costtimes):
 totalcost = 0
 curix = 0
 camix = np.zeros([len(jpgtimes),1],dtype=np.int)
 for jix, time in enumerate(jpgtimes):
 cost = np.inf
 for ix in np.arange(curix,len(costtimes)):
 thiscost = abs(time-costtimes[ix])
 if thiscost < cost:
 cost = thiscost
 curix = ix
 else:
 break
 camix[jix] = curix
 curix = curix + 1
 totalcost = totalcost + cost
 return [totalcost,camix]

def matchtocam(jpgtimes,camtimes):
 “””figure out which rows match which camera times and return index of the matches.”””

deal with limited resol
dt = trim_mean(np.diff(jpgtimes),proportiontocut=.1)
window = 2000./dt #apply a ~2second smoothing filter
window = np.round(window/2)*2+1 #ensure an odd filter
if window>=3:
tt = savgol_filter(jpgtimes,window_length=int(window),polyorder=1,mode=’nearest’)
ix = abs(tt-jpgtimes)<1000
jpgtimes[ix]=tt[ix]

constoffset = camtimes[0] #the minimizer works better if we are closer to zero.
camtimes = camtimes - constoffset
construct a costtimes-vs-cost list we can interpolate in to figure out distance to closest
cam message
costtimes = np.sort(camtimes)
dt = np.diff(costtimes)
costtimes = np.interp(np.arange(-0.5,len(costtimes),.5),np.arange(len(costtimes)),cost-
times,left=costtimes[0]-np.max(dt),right=costtimes[-1]+np.max(dt))
cost = costtimes * 0
cost[2:-1:2] = dt/2
cost[0] = np.max(dt) #special treatment of edges.
cost[-1] = np.max(dt)

this function calculates the mean(square(temporaldistance)) to nearest photo.
costfun = lambda offset: np.mean((np.interp(jpgtimes+offset,costtimes,cost,left=cost[0],
right=cost[-1]))**2.0)

 constoffset = camtimes[0] #the minimizer works better if we are closer to zero.
 camtimes = camtimes - constoffset

 # this function calculates the mean(square(temporaldistance)) to nearest photo.
 costfun = lambda offset: costfun2(jpgtimes+offset,camtimes)[0]

 # Search for which cam corresponds to jpgtime ...
 bestcost = np.Inf
 bestoffset = 0
 for camtime in camtimes:
 for dt in np.arange(-1000,1001,250):
 curoffset = camtime - jpgtimes[0] +dt #todo: pick a less random one
 curcost = costfun(curoffset)
 if curcost < bestcost:
 bestoffset = curoffset
 bestcost = curcost
 # then optimize
 offset = minimize(costfun, bestoffset) #the cost fun has many local minima, so we need to
be close to the optimal time

 t = jpgtimes + offset.x[0]

plt.plot(t[1:],np.diff(t))
plt.plot(camtimes[1:],np.diff(camtimes))

 camix = costfun2(t,camtimes)[1]
camix = np.interp(t,camtimes,np.arange(len(camtimes)),left = 0, right=len(camtimes)-1)
for ii in range(1,len(camix)-1):
dcamback = camix[ii]-camix[ii-1]
dcamforward = camix[ii+1]-camix[ii]
if (dcamforward == 0) & (dcamback>1):
camix[ii]=camix[ii]-1
if dcamback<=0:
camix[ii+1]=camix[ii]+1

if len(camix) > len(set(camix)):
todo: add logic for what to do if two images are the same.
raise(‘Photos have not all been assigned to different camera trigger events.’)
 camix = np.concatenate(camix).tolist()
 return camix

if __name__ == “__main__”:

 folders = glob.glob(r’D:\drone\EGRIP 2017\2017-07-30 C1D1\flight1\logs’,recursive=True)

 # folders = glob.glob(‘d:\\drone\\EGRIP 2017\\2017-08-07 C1C2\\flight1\\logs’)
 for folder in folders:
 folder = os.path.split(folder)[0] + ‘/’
 print(“ “)
folder = r”D:/drone/EGRIP 2017/2017-07-25 HC forest/”
folder = r”D:\drone\EGRIP 2017\2017-08-02 D2C1/D2/”

 print(“Folder: {}”.format(folder))

 globpattern = folder + r”images/*.JPG”
 logfile = glob.glob(folder + r”logs/*.log”)
 if len(logfile)==0:
 print(“Skipping... no log file”)
 continue
 logfile=logfile[0]

 outputfolder = folder + ‘georef/’

 print(“Parsing log...”)

 log = parselog.parselogfile(logfile)

 print(“Extracting EXIF...”)
 images = getImageList(globpattern)

 print(“Number of images: {}”.format(len(images)))
 print(“Number of CAM messages in log: {}”.format(len(log[“CAM”])))

 print(“Matching photo time to camera log”)
 jpgtimes = images.RelTimeMS.values
 camtimes = log[‘CAM’][‘GPSTime’].values
 camix = matchtocam(jpgtimes,camtimes)
 print(“Matched! index of first & last photo: {}-{}”.format(camix[0],camix[-1]))

 jpgcams = log[‘CAM’].iloc[camix].copy()
 jpgcams.set_index(images.index.values,inplace =True)
 jpgcams.index.name = ‘Filename’

 if not os.path.exists(outputfolder):
 os.makedirs(outputfolder)

 #jpgcams[[‘Lng’,’Lat’,’Alt’,’Yaw’,’Pitch’,’Roll’]].to_csv(outputfolder + ‘CamLocations_raw_
CAM.txt’)

 shutterdelayMS = 550 #Sony QX1
 print(“Accounting for shutterlag of {} ms”.format(shutterdelayMS))
 #TODO: get lat,long,alt etc from EKF1
 useEKF1 = True
 if useEKF1:
 datasource = ‘EKF1’ #ATT -OR- EKF1
 mappings = {‘Lat’: ‘PN’, ‘Lng’: ‘PE’, ‘Alt’: ‘PD’}
 jt = jpgcams[‘GPSTime’]+shutterdelayMS-log[‘gpstimeoffset’]

 for jpgkey, ekfkey in mappings.items():
 y=log[‘GPS’][jpgkey]
 x=log[‘GPS’][ekfkey]
 p=np.polyfit(x,y,1) #infer linear mapping...
 x=np.interp(jt,log[‘EKF1’][‘TimeMS’],log[‘EKF1’][ekfkey])
 jpgcams[jpgkey] = np.polyval(p,x)
 else:
 jt=jpgcams[‘GPSTime’]+shutterdelayMS
 jpgcams[‘Lat’] = np.interp(jt,log[‘GPS’][‘TimeMS’],log[‘GPS’][‘Lat’])
 jpgcams[‘Lng’] = np.interp(jt,log[‘GPS’][‘TimeMS’],log[‘GPS’][‘Lng’])
 jpgcams[‘Alt’] = np.interp(jt,log[‘GPS’][‘TimeMS’],log[‘GPS’][‘Alt’])
 datasource = ‘ATT’ #ATT -OR- EKF1

 jt = jpgcams[‘GPSTime’]+shutterdelayMS-log[‘gpstimeoffset’]
 #todo: protect against circular overflows - quaternion interpolation... (Gimbal lock
extremely unlikely though)
 jpgcams[‘Roll’] = np.interp(jt,log[datasource][‘TimeMS’],log[datasource][‘Roll’])
 jpgcams[‘Pitch’] = np.interp(jt,log[datasource][‘TimeMS’],log[datasource][‘Pitch’])
 log[datasource][‘Yaw’] = np.unwrap(log[datasource][‘Yaw’]*np.pi/180)*180/np.pi
 jpgcams[‘Yaw’] = np.interp(jt,log[datasource][‘TimeMS’],log[datasource][‘Yaw’]) % 360

 outputfilename = outputfolder + ‘CamLocations_{}lag.txt’.format(shutterdelayMS)
 jpgcams[[‘Lng’,’Lat’,’Alt’,’Yaw’,’Pitch’,’Roll’]].to_csv(outputfilename)

READINESS
THE LARP

By
Kostis Stafylakis

Theo Triantafyllidis
Alexis Fidetzis

With
Vasilis Bakalis

Stathis Chalkias
Sotiris Fokeas

Christos Fousekis
Marilia Kaisar

Kosmas Kosmopoulos
Markella Ksilogiannopoulou

Anna Samara
Lia Smaragda

Savvas Tsimouris
Vassilis Vlastaras

Poka-Yio

Movement Advisor
Maria Gorgia

MORE AT
slimetech.org/readiness

